

Charting a new course for CAR-NK cell therapies Off-the-shelf immunotherapies for solid tumors

BIO Partnering Conference Nonconfidential Overview June 2022 Catamaran is purpose-built to address the challenges of developing safe and effective cell therapies in solid tumors by first intent

Charting a new course in cell therapy to reach more patients

Two pipeline programs progressing toward the clinic

CAT-179 (HER2 CAR): *in vivo* efficacy established; FDA aligned on path to IND in Y23 CAT-248 (CD70 CAR): high-potential for both solid and heme malignancies Platform can be efficiently deployed against additional targets

■ TAILWINDTM platform: end-to-end CAR-NK design and manufacturing

Scalable manufacturing process with cryopreserved, off-the-shelf product Non-viral engineering method for large payloads and efficient manufacturing Proprietary synthetic biology solutions overcome tumor microenvironment

Building an exceptional cell therapy team

45 FTEs in Boston's Seaport District with highly experienced R&D and CMC groups \$42M raised to date (\$55M post-money)

2

Initiating Series B to fund programs at least through first IND and support CMC

Catamaran is pursuing a differentiated strategy to address the challenges of solid tumor treatment

3

Catamaran has made significant advancements highlighted by in vivo efficacy data in tumor xenograft models

KEY MILESTONES

ine	\checkmark	In vivo efficacy and positive FDA feedback on HER2 CAR-NK program, setting path to IND
Pipel		Early In vivo officacy with CD70 CAR-NK

Early In vivo efficacy with CD70 CAR-NK

Versatile transposon-based CAR-NK manufacturing platform; proprietary know-how

Platform

Modular synthetic biology solutions for tumor microenvironment and persistence; enables broad tumor applications

CAT-179 IS EFFICACIOUS IN PRECLINICAL MODELS

Catamaran has clear avenues of differentiation in the NK Cell Therapy landscape

	catamaranBIO	nkarta		Takeda	artiva	Fete	CENTURY	SHORELINE
Lead CAR Programs	• HER2 • CD70	• NKG2D • CD19	 CD33 & FLT3 GPC3 	• CD19	HER2CD19	• CD19 • BCMA	 CD19 CD133 & EGFR 	Undisclosed
Manufacturing	Transposon	Gamma- retrovirus	Viral	Gamma- retrovirus	Lentivirus	Gamma- retrovirus	Homology Directed Repair	Undisclosed
Tumor Micro- Environment Solution	\checkmark	X	X	X	X	X	X	X
Cell Source	РВМС	PBMC	РВМС	Cord Blood	Cord Blood	IPSC	IPSC	IPSC

Experienced leadership team with deep cell therapy expertise

Management Team

Alvin Shih, MD, MBA Chief Executive Officer

Pfizer Retrophin dirarm LEK ENZYVANT McKinsey

Cherry Thomas, MD Chief Medical Officer

ARRAY (H Bristol Myers Squibb SCARIBOU UNOVARTIS

Scott Holmes, MS, MBA Chief Financial Officer dison Kiadis^{pharma} KERYX 🔼 amag

Michael DeRidder, PhD

Product Planning

LEK

SVP, Corporate Strategy & New

Board of Directors

Frank D. Lee, Chair Forma Therapeutics

Houman Ashrafian SV Health Investors

Maina Bhaman Sofinnova Partners

Caroline Gaynor Lightstone Ventures

Miles Gerson Takeda Ventures

Kevin Pojasek Enara Bio

Alvin Shih Catamaran Bio

Vipin Suri, PhD, MBA *Chief Scientific Officer* gsk Pfizer COSSIDIAN

RazeTherapeutics

Lilian Yengi, PhD VP, Preclinical Development & Biomarkers YDyne Voluebirdbio AstraZeneca Wyeth

Mark Boshar. JD Chief Operating Officer RubiusTherapeutics

SYNOGIC WILMERHALE

VP, Human Resources

CHIASMA VERTEX

Tara Place

Biogen

Joseph Gould, PhD VP, Technical Operations geron Cityof Hope

Our scientific co-founders and SAB bring strong background in NK cells, TME clinical expertise, and cellular engineering

Scientific Co-Founders

- Pioneer in non-viral engineering and editing of immune cells for cell therapy
- Led teams optimizing TcBuster for high efficiency engineering of NK cells
- Helped deliver first TcBuster engineered immune cell IND
- Focus on translational research in cell therapy to the clinic

- 20+ years of treating patients with cell therapies
- Leading cell therapy/IO clinician and scientist/investigator - serves/has served as the Sponsor on over 15 IO INDs
- Engineered immune cells, including NK cells, with syn bio switches (published) to overcome TME immunosuppression
- Translated novel cell therapies to over 20 clinical trials

Scientific Advisory Board

Lewis Lanier, PhD UCSF

Catherine Blish, MD, PhD Stanford

Yvonne Chen, PhD UCLA

Gianpietro Dotti, MD University of North Carolina, Chapel Hill

Timothy Harris, PhD Repertoire Immune Medicines

Chris Klebanoff, MD Memorial Sloan Kettering Cancer Center

Eric Yvon, PhD George Washington School of Medicine

7

Confidential

TAILWIND[™] platform

Clinical trials with allogeneic engineered NK products provides strong evidence for safety and efficacy

EFFICACY ORRs from 50%-80% and CRs up to 60% in heme malignancies

SAFETY No CRS/ICANS/GVHD, outpatient administration likely

CELL SOURCE Responses from Cord blood, PBMC, and iPSC cell lines

PERSISTENCE

Engineered IL15 enhances persistence and expansion

DOSING Durable efficacy will likely require multiple doses

¹Liu et al (2020), N Engl J Med;382:545-53, ²https://ir.fatetherapeutics.com/news-releases/news-release-details/fate-therapeuticsannounces-positive-interim-clinical-data-its, ³https://ir.nkartatx.com/staticafiles/6d097f5f-2f67-4e80-8903-2c96b455b244 9

TAILWIND Platform is differentiated on key dimensions

- Optimized cell process that requires <20d and produces hundreds of doses from a single run
- Improved efficiency of editing (>60-75%) vs other engineering methods
- Larger payload capacity and multi-plex engineering

TAILWIND[™] Platform

10

2 SYNTHETIC BIOLOGY-ENABLED TUMOR MICROENVIRONMENT (TME) and PERSISTENCE SOLUTIONS

- TGFβ Trap effectively **negates TME** immunosuppression
- Switch receptors turn TGFβ and other factors into stimulatory signals for immune cells
- IL15 construct enhances persistence >165d in mice
- Source of **novel IP and partnership** substrate

Scalable, versatile process enables rapid, cost-effective manufacturing

19-day manufacturing process yields ~500 doses of CAR-NK product

Transposon-based NK cell modification enables design optionality and more efficient manufacturing

TcBuster Transposon System

Simple, Cost-effective Manufacturing Fewer GMP components than viral systems

Large Genetic Payloads Capacity for significantly larger genetic payloads than viral systems

Single-step Multiplex Engineering Can simultaneously insert and knockout genes in one step

Transposon-based modification is highly efficient and yields active CAR-NK cells

Transposon engineering efficiencies are consistent across multiple donors (Day 8 post electroporation)

- 50% 80% efficiency in multiple donors
- Vector copy number show <5 copies/genome

Transposon-modified NKs are highly active

 CAR-NK cells demonstrate CAR-dependent in vitro cytotoxicity

Integrated synthetic biology platform for identifying, designing, and testing solutions for solid tumor microenvironment hurdles

catamaranBIO

Confidential

Switch receptor (SR) platform: Tailored modules for durable solid tumor efficacy

		TGFβ-Trap	TGFβ-Switch Receptor	TME-Switch Receptor	
BENEFITS		PRESERVE CAR-NK activity and function in high TGF β tumors.	ENHANCE CAR-NK proliferation and function in high TGFβ tumors	EXTEND to other TME factors to broadly enable solid tumor efficacy	
STRUCTURE	Extracellular domain	TGFβRII	TGFβRII	Various TME factors	
	Intracellular domain	None	Signaling optimized for function	Signaling optimized for function	
FUNCTION	Protect engineered and surrounding cells	+++	+++	+++	
	Enhance function	-	+++	+++	
	ModularityCAR + TGFβ Trap CAT-179, CAT-248		CAR + TGFβSR	Multifunctional NK cells	

15

TGFβ Trap protects NK cells from TGFβ-mediated immunosuppression in vitro and in vivo

NK cell cytotoxicity fully retained in vitro

- NK cells engineered to express TGFβ Trap are incubated with K562 tumor cells (1:3 E:T) in the presence or absence of TGFβ for 3 hours
- NK cell expressing TGFβ DNR maintain high levels of tumor cell killing in the presence of immunosuppressive TGFβ

NK cell efficacy enhanced in vivo

Next generation solutions can enable tunable responses to any of a variety of tumor microenvironment (TME) factors

By modifying intracellular domains, switch receptors can modulate NK cell proliferation in response to TGFβ

- 43 different intracellular domains (ICD 1 43) were coupled to the TGF β receptor to create a tunable response to this immunosuppressive signal
- NK cell numbers were counted after 5 days expansion with or without 10 ng/ml TGFb

Switch receptors against various TME factors induce reporter gene expression

- The extracellular domains of 9 different TME factors (TME 1 9) were coupled to a reporter to create switches to various immunosuppressive elements relevant across multiple solid tumor indications
- Readout is reporter gene in Jurkat cells after 24hrs incubation with the inducers

IL15 construct imparts expansion and prolonged persistence to CAR-NK cells without exogenous cytokine support

- IL15 enhances persistence of engineered NK cells in clinical studies
- CAR-IL15-NK cells continue to be functional and effectively lyse tumor cells at 150d

Persistence of human NK cells *in vivo* (5M NK cells / NSG mice / IV)

18

Confidential

Catamaran's TAILWIND[™] platform provides end-to-end CAR-NK cell engineering and cell processing

- We have developed and end-to-end process to predicably and efficiently manufacture CAR-NK
 - Current estimate is that >100 doses can be made from a single leukopak
 - Transposon approach offers superior payload capacity and flexibility
- TAILWIND enables a scalable manufacturing process without the need for selection and minimal use of feeder cell line

Initial programs will target HER2 and CD70

Catamaran HER2 CAR-NK program will target solid tumors

HER2 CAR-NK lead demonstrates anti-tumor activity in vitro and in vivo

- In vitro, HER2-359 demonstrates CAR dependent cytotoxicity against multiple HER2 expressing cell lines
- In vivo, therapeutic HER2-359 dosing results in significant reduction in tumor signal compared to control groups

23

CD70 is an attractive CAR-NK cell target for a broad spectrum of malignancies

CAT-248

			CAT-248: CD70 CAR-NK		
		Target Rationale	 CD70 present in solid and heme malignancies Low expression in normal tissue Initial clinical efficacy with antibodies and ADCs 		
		Indications	 Renal cell carcinoma Hematologic malignancies (AML) 		
		Unmet Need	 Poor prognosis solid tumors and heme malignancies 		
Binder	anti-CD70 scFv				
CAR Architecture	CAR optimized for NK cells	Competitive Landscape	 Cusatuzamab/Azacytidine in PhIIa (AML) Allogeneic CD70 CAR (CRSP, ALLO, Nkarta) for solid turn one and home. 		
TME Solution	TGFβ Trap		solid tumors and heme		
NK Persistence	Native IL15	Key Differentiators	 CAT-248 will address TME challenges in RCC CD70 knockout (required for manufacture) can be multiplexed with other edits via transposon 		
CD70 Expression on NKs	CD70 Fratricide solution				
Source: Perna et al (2017); Flie et al. (2020); Riether et al. (202	swasser et al. (2019); Ryan et al. (2010); Riether et al. (2016); I 20); Pal et al. (2019); SEER	naguma Confidential	24 catamaran _{BI}		

Source: Perna et al (2017); Flieswasser et al. (2019); Ryan et al. (2010); Riether et al. (2016); Inaguma et al. (2020); Riether et al. (2020); Pal et al. (2019); SEER

CAT-248 produced via single-step multiplex engineering

Single-step delivery of CAR and CRISPR/Cas9 editing in NK cells using the TAILWIND[™] platform

- Multiple RNA / DNAs / RNPs can be delivered in a single electroporation step
 - Simplified manufacturing and versatile engineering of multiply edited NK cells
 - Compatible with Transposases, CRISPR, TALEN/ZFNs, Base editors and other genome modifying technologies
- CAT-248 product is manufactured in a single step (60% CAR+,85% CD70 KO)
 - Efficiently lyse CD70 expressing target cell lines in vitro
 - Efficacious in AML and RCC CD70 expressing cell line xenografts

25

CAT-248 demonstrates CAR activity & IL15 dependent persistence

- KO of CD70 in NK cells does not impede engineering, expansion, CAR-independent cytotoxicity or IL15 dependent persistence
- CD70 CAR significantly enhances NK cell cytotoxicity towards CD70 expressing cell lines

Confidential

26

catamaran

CD70 CAR enhances survival in vivo models for RCC and AML Collaboration with B Moriarity - Univ of Minnesota

Exploratory pharmacology studies with CD70 CAR-NK cells

Study	Construct	CAR-NK cell dose (+ IL15 3X/wk)	Route
786-O-luc (Renal Cell Carcinoma) IP xenograft	CAR1-NK CAR4-NK	5E6 CAR-NK cells at days 3, 6, 10, 13 after 1E6 tumor cells	IP
MOLM-13-luc (Acute Myeloid leukemia) IV xenograft	CAR1-NK CAR4-NK	5E6 CAR-NK cells at days 3, 6, 10, 13 after 0.25E6 tumor cells	IV

- CAR1 (CD27) and CAR4 (ScFv) are:
 - Delivered via transposon engineering and simultaneous CD70 KO into NK cells
 - CAR only constructs (do not express IL15 or TGF β Trap)
- CAR4 enhances survival in MOLM13 AML model to 27d (control = 17-20d)
 - NK cells detected in bone marrow and periphery

Catamaran is purpose-built to address the challenges of developing safe and effective cell therapies in solid tumors by first intent

Charting a new course in cell therapy to reach more patients

Two pipeline programs progressing toward the clinic

CAT-179 (HER2 CAR): *in vivo* efficacy established; FDA aligned on path to IND in Y23 CAT-248 (CD70 CAR): high-potential for both solid and heme malignancies Platform can be efficiently deployed against additional targets

■ TAILWINDTM platform: end-to-end CAR-NK design and manufacturing

Scalable manufacturing process with cryopreserved, off-the-shelf product Non-viral engineering method for large payloads and efficient manufacturing Proprietary synthetic biology solutions overcome tumor microenvironment

Building an exceptional cell therapy team

45 FTEs in Boston's Seaport District with highly experienced R&D and CMC groups \$42M raised to date (\$55M post-money)

28

Initiating Series B to fund programs at least through first IND and support CMC

