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Abstract 

Background: Understanding the role of cancer hotspot mutations is essential 
for unraveling mechanisms of tumorigenesis and identifying therapeutic vulnerabili-
ties. Correcting cancer mutations with base editing is a novel, yet promising approach 
for investigating the biology of driver mutations.

Results: Here, we present a versatile platform to investigate the functional impact 
of cancer hotspot mutations through adenine base editing in combination with tran-
scriptomic profiling. Using this approach, we correct TP53 hotspot mutations in cancer 
cell lines derived from diverse tissues, followed by mRNA sequencing to evaluate 
transcriptional changes. Remarkably, correcting these mutations not only reveals 
the dependency on mutant allele expression but also restores highly conserved tumor-
suppressive transcriptional programs, irrespective of tissue origin or co-occurring 
mutations, highlighting a shared p53-dependent regulatory network. Our findings 
demonstrate the utility of this base editing platform to systematically interrogate 
the functional consequences of cancer-associated mutations and their downstream 
effects on gene expression.

Conclusions: This work establishes a robust framework for studying the transcriptional 
dynamics of cancer hotspot mutations and sheds light on the conserved biological 
processes reinstated by p53 correction, offering potential avenues for future targeted 
therapies.
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Background
Cancer remains one of the most challenging diseases to treat, owing to its complex, 
adaptive, and multifaceted nature [1, 2]. A hallmark of cancer cells is the presence of 
cancer driver mutations—genetic alterations that provide a selective growth advan-
tage, driving tumor initiation and progression [3, 4]. These mutations are central to the 
malignant transformation of normal cells and typically occur alongside additional driver 
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mutations and numerous benign “passenger” mutations [5]. Current treatment strate-
gies, including chemotherapy [6, 7], radiation [8], targeted therapies [9], and immuno-
therapies [10], aim to exploit vulnerabilities conferred by these driver mutations. Despite 
these advancements, understanding the functional consequences of driver mutations 
and how they interact with co-occurring mutations remains a significant barrier to 
improving therapeutic outcomes [5, 11]. Ideally, investigations should assess cancer 
driver mutations within their native genomic context as well as in the setting of naturally 
developed tumors [11–13].

Among the most well-defined driver mutations are the recurrent hotspot mutations 
in the tumor suppressor gene TP53, often referred to as the “guardian of the genome” 
[14]. TP53 mutations, occurring at hotspots such as R175, G245, R248, R273, and R282, 
are among the most common genetic alterations in human cancers [15–17], collectively 
present in 5–10% of all cancer samples tested [16, 18, 19]. These mutations disrupt p53’s 
role as a transcriptional regulator of apoptosis, cell cycle control, and senescence, con-
tributing to tumorigenesis [18]. Interestingly, the same TP53 hotspot mutations are 
observed across diverse cancer types, typically alongside a wide spectrum of other driver 
mutations [20, 21], suggesting that TP53 mutations cooperate with many different can-
cer drivers. However, while pioneering studies had shown that overexpression of wt p53 
in cancer null lines induces growth disadvantages [22, 23], it remains unclear whether 
repairing the same hotspot mutations on their natural locus can exert the same consist-
ent effects across different tumor contexts or if their functional consequences depend on 
the co-occurring mutational landscape [24–26]. This fundamental question poses a sig-
nificant challenge to the development of targeted therapies, as understanding whether 
the effects of TP53 mutations are tumor-agnostic or context-specific could shape thera-
peutic strategies [17, 27, 28].

Addressing this question has proven difficult due to the inherent challenges of stud-
ying the effects of individual mutations in the context of naturally occurring tumor 
genomes [29, 30]. Traditional models, such as using transgenes or engineered knock-
in mutations, have provided foundational insights but also come with significant limi-
tations [31, 32]. Transgenic models often involve random integration of the mutation 
under an artificial or non-native promoter, leading to non-physiological expression as 
well as bypassing endogenous enhancers, silencers, and feedback loops, all while bearing 
the risk of insertional mutagenesis [33]. Meanwhile, knock-in models examine a specific 
mutation at the endogenous locus but often fail to fully capture the dynamic and multi-
faceted nature of tumor evolution in addition to being costly, time-consuming, and low-
throughput [34, 35]. Recent advances in base-editing technologies, such as adenine base 
editors (ABEs) [36], offer a precise, efficient, and tunable method for correcting driver 
mutations in their native genomic context [37–40]. This approach enables direct inter-
rogation of the functional consequences of specific mutations in cancer cells, providing a 
powerful tool for studying driver mutations.

In this manuscript, we expand on the correction of cancer driver mutations in a single 
cell line [37], and explore the correction of five cancer hotspot mutations across six dis-
tinct cell lines and integrate adenine base editing with transcriptomic profiling to assess 
the functional impact of correcting two different TP53 mutations. Our findings reveal a 
highly conserved transcriptional p53 response following mutation correction, suggesting 
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that the effects of TP53 hotspot mutations are largely independent of tumor origin and 
co-occurring mutations. We also show that the approach is transferable to other cancer 
driver genes, suggesting that the approach can be broadly utilized. Hence, this integrated 
platform not only provides insights into the biology of TP53 mutations but also estab-
lishes a framework for studying the functional consequences of driver mutations and 
their therapeutic implications.

Results
Correction of TP53‑R273H leads to growth disadvantage in multiple cancer cell lines

The TP53-R273H mutation is one of the most common hotspot mutations in cancer, 
found across various tumor types and usually co-occurring with a plethora of other 
(driver) mutations [41–44]. While it is found so frequently, it remains unclear whether 
correcting this mutation would lead to a similar depletion of mutant cells across dif-
ferent cancer types or if the response would vary due to the distinct tissue origins and 
genetic backgrounds of the tumors. To investigate this, we analyzed four cancer cell 
lines derived from a pancreatic ductal adenocarcinoma (PANC-1), epidermoid carci-
noma (A431), colorectal adenocarcinoma (HT-29), and non-small cell lung adenocarci-
noma (NCI-H1975), each harboring the TP53-R273H mutation together with numerous 
unique co-occurring mutations (Additional file 1: Table S1).

The four cell lines were infected with a lentivirus containing an adenine base edi-
tor (NG-ABE8e) [45] coupled to a GFP cassette, as well as a puromycin resistance 
gene. Following puromycin selection, the ABE-expressing cells were infected at a level 
of ~ 30–80% with another lentivirus containing both the gRNA for TP53-R273H correc-
tion as well as a second fluorescent protein (e.g., tdTomato). Hence, two competing pop-
ulations, one expressing only the ABE (green) and another expressing both ABE and the 
R273H-correcting gRNA (green + red) were co-cultured in the same well. As a control, a 
gRNA targeting a functionally irrelevant adenine, as well as a non-targeting gRNA, were 
used in separate experiments to exclude possible effects due to infection with a lentivi-
rus. The levels of green and green + red cells were then followed over time and red fluo-
rescence was measured every 3–6 days for ~ 25 days (Fig. 1A).

All four cancer cell lines infected with the R273H gRNA-containing lentivirus exhib-
ited a rapid decline compared to those infected with the control gRNAs (Fig. 1B, Addi-
tional file  2: Fig. S1), suggesting that correcting the mutation back to the wild-type 
sequence extensively impaired cell growth across all four lines. A rapid reduction in the 
TP53-R273H gRNA-expressing cells was observed at early time points, continuing until 
approximately day 10, after which the decline gradually plateaued. To confirm editing, 
we performed Sanger sequencing of a PCR fragment obtained from genomic DNA iso-
lated from three of the lines 3 days post infection with the gRNA virus. TP53-R273H 
editing rates were measured between 44 and 85% (Fig. 1C), demonstrating the rapid and 
efficient correction of the driver mutation in these cells.

To determine co-occurring cancer driver mutations in the four cell lines, we extracted 
their mutational profile from the DepMap portal [48], the COSMIC Cancer Gene Cen-
sus [49], and the OncoKB database [46, 47]. This analysis revealed a set of 132–365 over-
all mutational burden and 4–8 high confidence driver mutations per line, all of which 
were unique except for TP53-R273H (Fig. 1D, Additional file 1: Table S1). Hence, despite 
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differences in tissue of origin and mutational profile, all four cell lines exhibited a uni-
form dependency on the R273H driver mutation.

After 10–15  days in culture, all of the corrected cell lines reached a plateau, where 
no further depletion was observed, despite the fact that the cells continued to express 
GFP and tdTomato (Fig.  1B). This was surprising, because presumably they should 
still express the ABE and the mutation-targeting gRNA. The inability to reach com-
plete depletion could indicate that clones had emerged that can grow in the presence 
of wild-type p53, or that bystander edits had inactivated p53 expression altogether. To 
investigate these possibilities, we first sorted the surviving GFP +/tdTomato + cells, fol-
lowed by gDNA extraction. Sanger sequencing of PCR fragments amplifying the hot-
spot mutation was then repeated. Intriguingly, no on-target or bystander editing could 
be observed in any of the samples (Fig. 1C), implying that there must be another reason 
for the ability of the cells to survive.

To investigate why the surviving double-positive cells remained unedited, we re-
challenged one of the GFP +/tdTomato + sorted cell lines (PANC-1) by transfecting it 
with either ABE mRNA or synthetic TP53-R273H gRNA (Additional file 2: Fig. S2A). 
Transfection with the ABE mRNA did not lead to any editing. In sharp contrast, cells 
transfected with the R273H gRNA and the control gRNA showed more than 70% A-to-G 

Fig. 1 Correction of TP53-R273H in four different cancer cell lines. A Schematic overview of the experimental 
setup. Important steps are indicated by arrows. On day 3 post infection, the time course was started, and the 
ratio of tdTomato positive (= gRNA-expressing) versus tdTomato negative cells was measured every 3–6 days. 
The tdTomato percentages measured at day 3 were set to 100%. B Time course of the four indicated cell 
lines PANC-1, A431, HT-29, and NCI-H1975 for the TP53-R273H gRNA transduced cells (red) versus control 
gRNA transduced cells (gray). Reference = tdTomato level at day 3. Error bars represent mean + SD from 
independent infections in triplicates. *** indicates p < 0.001, **** indicates p < 0.0001. C Editing efficiency at 
the target loci of the corrected driver mutations. For day 3, DNA was taken from the mixed population (e.g., 
50% infected with gRNA virus), and editing was normalized to the gRNA-expression level. For day 32–36, DNA 
was isolated from the sorted, tdTomato/GFP double-positive population. D High confidence driver mutations 
of the four lines, annotated as “oncogenic” or “likely oncogenic” in OncoKB [46, 47]
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conversion (Additional file 2: Fig. S2B + D). Moreover, in comparison to the ABE mRNA 
and control gRNA transfected cells, we observed a clear depletion of the cells trans-
fected with the driver mutation-correcting gRNA (Additional file 2: Fig. S2C), demon-
strating that these cells are still sensitive to TP53 correction. This result indicates that 
in the surviving cells, the base editor is functionally intact, whereas the gRNA does not 
seem to be expressed properly. Indeed, we observed a greater than 50,000-fold reduction 
in TP53 gRNA expression in sorted GFP+/tdTomato+ cells compared to freshly TP53 
gRNA-infected cells, suggesting that silencing of the U6 promoter may underlie the lack 
of editing (Additional file 2: Fig. S3).

We conclude that correction of the TP53-R273H mutation induces a strong and rapid 
depletion of corrected cells. This effect is comparable across different cancer cell lines 
and independent of their mutational profile. Because we observed no editing in the sur-
viving cells, this might indicate that correction of the TP53-R273H mutation could be 
an event that is hard to overcome for the cells and to acquire resistance against. Taken 
together, these results support the notion of the same p53 mutation being critical across 
different tumor types, highlighting the role of p53 as a central tumor suppressor.

Correction of TP53‑R273H restores conserved tumor‑suppressive transcriptional programs

To start unraveling the molecular mechanisms underlying the detrimental effects of 
TP53-R273H correction across different cell lines, we performed RNA-seq experiments 
on three R273H-mutant lines (PANC-1, HT-29, A431).  Cell lines expressing  the ABE 
were infected with a virus expressing either a control gRNA or one targeting the driver 
mutation, and RNA was isolated at 36, 48, and 72 h post infection (p.i.). Transcriptome 
analysis via RNA-seq was then performed to identify differentially expressed (DE) tran-
scripts (Fig. 2A).

To first evaluate the efficiencies of TP53 correction, we quantified high-quality reads 
from transcripts carrying the wildtype versus mutant sequence. Consistent with the pre-
vious experiments (Fig. 1C), we detected editing rates ranging from 21 to 35% at 36 h, 
increasing to 47–90% at 72 h post infection, confirming efficient base editing across all 
RNA samples (Additional file 2: Fig. S4).

Next, we determined DE genes after TP53 correction at the different time points. 
At the earlier ones (36  h and 48  h p.i.), comparatively few transcripts were signifi-
cantly changed in their expression in all three cell lines, consistent with the time 
required to complete the editing of the DNA and subsequent transcriptional changes 
to occur (Additional file 2: Fig. S5A). Changes in the transcriptional profiles substan-
tially increased at 72  h p.i., when ~ 250–1500 genes were found to be differentially 
expressed in the three corrected cell lines (Fig.  2B). The majority of DE genes were 
upregulated, indicating that re-expression of the wild type p53 protein predomi-
nantly restored its main role as a transcriptional activator [51] (Fig. 2B). Notably, we 
observed a substantial overlap in DE genes across the different cell lines. For instance, 
188 (72%) and 160 (62%) of the 260 DE genes in HT-29 were shared with those in 
PANC-1 and A431, respectively (Additional file 2: Fig. S5B). Although differences in 
splicing, transcript abundance, or genome organization across the cell lines cannot be 
excluded, this finding suggests that correcting the TP53 mutation induces remarkably 
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similar transcriptional changes, despite the heterogeneity in co-occurring mutations 
and the distinct gene expression programs operating in these cell lines (Additional 
file 2: Fig. S5C).

To gain deeper insight into the transcriptional changes observed, we first examined 
the genes that were most significantly upregulated across the three cell lines (Fig. 2B). 
As expected, this included several key regulators of p53-mediated response, con-
sistently identified in all three lines. Prominent among these was CDKN1A, an early 
and well-characterized p53 target with crucial roles in cell cycle regulation and cel-
lular senescence [52, 53]. Additionally, transcripts associated with cell cycle arrest 
[54], such as BTG2, ZMAT3, GDF15, and PLK2/3 [55–59], were notably upregulated 
(Fig. 2B). Apoptosis-promoting genes [54], including BBC3 (PUMA), BAX, PHLDA3, 
CYFIP2, and TP53I3 [60–64], were also prominently induced, underscoring the acti-
vation of multiple p53-dependent pathways (Fig.  2B). Moreover, investigating the 
different time points allowed us to distinguish early and late responders within the 
upregulated genes (Fig. 2C, Additional file 2: Fig. S5A) [54].

We then examined the most significant downregulated transcripts. Among the 
downregulated genes, ESCO2—involved in S-phase progression [65]—was the only 
transcript consistently suppressed across all three cell lines. However, a greater num-
ber of significantly downregulated genes were identified in at least two out of three 

Fig. 2 RNA-Seq reveals differentially expressed genes in TP53-R273H corrected cells. A Schematic workflow 
with important steps indicated by arrows. B Volcano plots of DE genes 72 h post infection (p < 0.05, fc > 2). 
Gene names overlapping with a census of 116 core p53 targets from Fischer (2017) [50] are indicated. C 
Heatmaps of upregulated genes by cell line. X-axis: independent replicates used for mRNA-seq, sorted by 
time point (36–72 h p.i.). Genes were grouped using hierarchical clustering
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lines, many of which are integral to cell cycle regulation and mitosis (Fig.  2B). This 
finding aligns with TP53’s function in enforcing cell cycle arrest and maintaining 
genomic stability by suppressing proliferative and mitotic pathways [66].

Comparison to meta‑analyses uncovers high confidence p53 targets

Over the years, numerous individual studies and high-throughput analyses have been 
conducted to classify p53 target genes. However, these efforts have demonstrated lim-
ited consistency. For example, a comparative analysis of 16 datasets from 13 genome-
wide studies of p53 target genes revealed that only two genes were consistently identified 
across all datasets [50]. This lack of overlap suggests a high prevalence of both false posi-
tives and false negatives within these datasets. To address this issue and establish a more 
reliable set of p53 target genes, a meta-analysis integrating both individual studies and 
high-throughput datasets has been performed. This analysis identified 116 high-confi-
dence p53 target genes [50].

To compare our dataset with this established census of high confidence p53 target 
genes, we first looked at the individual cancer lines and detected striking similarities: 
In A431, a total of 56 of the 116 genes described to be the core transcriptional program 
were found to be upregulated. In HT-29 and PANC-1, this number was even higher with 
70 and 79 genes overlapping (Additional file 2: Fig. S6, Additional file 3: Table S2). Next, 
we compiled lists of commonly upregulated and downregulated genes from our tran-
scriptional profiles. A total of 192 shared genes were upregulated in at least two of the 
three cancer cell lines, with 63 genes consistently induced across all three lines (Fig. 3A). 
Gene ontology enrichment analysis of these upregulated transcripts showed a significant 
enrichment of pathways that are associated with p53 function (Fig. 3C). These findings 
suggest that correcting TP53 hotspot mutations, followed by transcriptome profiling, 
represents an effective strategy for uncovering p53 target genes.

Fewer consensus transcripts were observed to be downregulated, aligning with p53’s 
primary function as a transcriptional activator, where downregulation typically occurs 
indirectly via the p53-p21-DREAM pathway [51, 66]. A total of 92 genes were down-
regulated in at least two of the three lines, most of which play critical roles in cell cycle 
regulation and mitosis (Fig.  3B). This included key regulators of G2/M progression 
such as AURKA, AURKB, and PLK1 [69]. Gene ontology enrichment analysis of these 
(92) downregulated transcripts confirmed a significant enrichment of “cell cycle” and 
“mitosis”-related terms (Fig.  3D), consistent with prior findings that most downregu-
lated genes are indirect targets of the p53-p21-DREAM-CDE-CHR axis [66]. Interest-
ingly, our list of downregulated genes includes additional genes implicated in cell cycle 
regulation such as CDKN2C, CDT1, CENPJ, DSCC1, DSN1, E2F1 and E2F2, ERCC6L, 
KIF18B, NEK2, PBK, PIMREG, RAD51AP1, SPC24, and ZGRF1, suggesting that these 
genes might also be targeted for downregulation by the p53-p21-DREAM pathway.

To identify potential novel p53 transcriptional targets, we compared our dataset to 
three comprehensive p53 target gene lists: (1) an extended list of targets identified in at 
least three independent studies [50]; (2) a meta-analysis of 41 genome-wide p53 ChIP-
seq datasets, defining a p53 core cistrome [67]; and (3) an analysis focusing on lncRNAs 
as p53 targets [68]. After filtering out genes already identified in these datasets, we iden-
tified 60 upregulated genes that had not been previously described as p53 targets, 13 
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of which were consistently upregulated in all three cell lines (Fig. 3A, Additional file 3: 
Table S2). Recognizing the challenge of distinguishing direct p53 targets from second-
ary transcriptional effects, we further refined this list by examining publicly available 
p53 ChIP-seq data using the p53 BAER track [67]. This analysis revealed 25 upregu-
lated genes with ChIP-seq peaks detected in at least two independent datasets, suggest-
ing direct binding by p53. Of these, nine genes were upregulated in all three cell lines 
(Fig. 3A). While some of these genes have been reported in isolated studies, they have 
not yet been incorporated into high-confidence p53 target gene censuses. Our data sug-
gests that these 25 transcripts warrant reconsideration as bona fide p53 targets. Among 

Fig. 3 Analysis of differentially expressed genes at 72 h after TP53-R273H correction in A431, HT-29, and 
PANC-1 cells. A Consensus of upregulated genes in all three cell lines (left) or in two of the three lines 
(right). High confidence p53 target genes are highlighted in light red if they overlap with either [63, 67] 
or [68]. Genes that overlap with ChIP-seq peaks from the UCSC p53 BAER track [67] are shown in bold. B 
Downregulated genes in all three lines (top) or in two of the three lines (bottom). Genes described to be 
downregulated by the p53-p21-DREAM-CDE-CHR pathway in [66] are marked in blue. Genes described to 
have a role in cell cycle regulation are underlined. See also: Additional file 3: Table S2. C + D Gene ontology 
enrichment analysis of genes up-/downregulated in at least two of the three lines
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the most compelling candidates are PTCHD4, CYSRT1, and INPP5D, all of which were 
upregulated in all three cell lines. Additionally, ENSG00000251095 (LOC124900602) 
and ENSG00000287263 (ANXA2R-OT1) were identified, both containing perfect 
20-mer p53 response elements within their respective ChIP-seq peaks (Additional file 2: 
Fig. S7A).

Interestingly, we also identified a significant number of long non-coding RNAs (lncR-
NAs) among the upregulated transcripts, underscoring the growing recognition of lncR-
NAs as integral components of p53 signaling pathways [68, 70, 71]. For example, PINCR 
[72], PURPL [73], TYMSOS [74], MIR22HG [75], and MIR34HG [76] were consist-
ently upregulated, reflecting the broader transcriptional role of TP53 beyond protein-
coding genes. In this regard, we also discovered two novel lncRNAs, ZNF473CR and 
ENSG00000290041, with measured p53 ChIP-peaks (Additional file  2: Fig. S7B) that 
were upregulated in two of the three cell lines following TP53 correction (Fig. 3A). To 
the best of our knowledge, these lncRNAs have not been previously described as p53 tar-
gets, highlighting new avenues for exploring the role of non-coding RNAs in p53-medi-
ated transcriptional regulation.

Correction of TP53‑R175H similarly restores p53 tumor‑suppressive programs

Motivated by the results showing that correction of the TP53-R273H hotspot mutation 
leads to strong depletion in corrected cells, we sought to investigate if the same applies 
to R175H, a second TP53 hotspot mutation that has been shown to represent a “confor-
mational” mutation [77]. Thus, two cancer cell lines originating from different tissues 

Fig. 4 Correction of TP53-R175H in two different cancer cell lines. A Time course of HuCC-T1 and ESO-51 
cells for the TP53-R175H gRNA transduced cells (brown) versus control gRNA transduced cells (gray). 
Reference = tdTomato level at day 3. Error bars represent mean + SD from independent infections in 
triplicates. B Editing efficiency at day 3 after infection with TP53-R175H-repairing gRNA lentivirus. DNA was 
taken from the mixed population (e.g., 50% infected with gRNA virus), and editing was normalized to the 
gRNA-expression level. C Representative fluorescent images of control or R175H gRNA-expressing cells at day 
3 and day 17 after infection. Note the strong depletion of red cells at day 17 for the R175H gRNA transduced 
cells. D High confidence driver mutations of the two lines, annotated as “oncogenic” or “likely oncogenic” in 
OncoKB [46, 47]
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and containing the R175H mutation were corrected in the equivalent way: HuCC-T1 
(cholangiocellular carcinoma) and ESO-51 (esophageal adenocarcinoma) (Fig. 4).

Similar to the effects observed with TP53-R273H correction, the correction of R175H 
also had a strong and rapid detrimental impact on cells expressing both ABE and the 
gRNA targeting the driver mutation, with cells declining to a plateau around days 10–15 
post-infection (Fig. 4A, Additional file 2: Fig. S1). After 4 weeks in culture, only ~ 3–5% 
of GFP/tdTomato-expressing cells remained, indicating a high sensitivity to the cor-
rection of this driver mutation in both cell lines. Sanger sequencing of the target locus 
3 days post infection revealed 13–32% A-to-G conversion, confirming editing of the tar-
get base (Fig. 4B). When comparing the mutational profile, we again found no similari-
ties between the lines except for the R175H hotspot mutation (Fig. 4D, Additional file 1: 
Table  S1). Notably, despite these differences in tissue origin and co-mutation profiles, 
both cell lines exhibited comparable sensitivity to TP53-R175H correction. This result 
supports the notion that TP53 hotspot mutations may maintain oncogenesis in a man-
ner that is independent of cell type and co-occurring mutations.

To investigate whether the conserved p53 tumor-suppressive program we observed 
after correction of the R273H mutation also extends to correction of the R175H muta-
tion, we performed mRNA-seq for one of the two lines containing the R175H mutation 
(ESO-51, at 72 h p.i.). Correction of the R175H mutation was confirmed on transcript 
level (58%) (Additional file 2: Fig. S8), resulting in 260 DE genes passing the significance 
and fold change thresholds (Fig.  5A + B). The similarities in p53 response were stun-
ning: Among the upregulated genes, 87% were also upregulated in at least one of the 
R273H corrected lines (Additional file 4: Table S3), with 63% of the upregulated genes 
described as high confidence p53 targets [50, 67, 68] (Fig.  5C). Looking at the down-
regulated genes, we observed a similar pattern: an astonishing 93% were also down-
regulated in at least one of the R273H-corrected lines. Moreover, clear activation of the 
DREAM pathway was observed, as well as downregulation of a plethora of other cell 
cycle genes. Gene ontology analysis confirmed the enrichment of terms associated with 
p53 function (Fig. 5D + E). To identify potential mutation-specific DE genes, we sought 
to compare DE genes following R273H vs R175H repair. Interestingly, a total of twenty-
six transcripts were upregulated in all the lines following the R273H mutation correc-
tion but were not differentially expressed in ESO-51 (Additional file 4: Table S3). These 
transcripts might indicate a mutation-specific signature. However, at this point we can-
not exclude other reasons for this observation, such as clonal variation or differences in 
cellular context. Performing R175H correction in additional cancer cell lines, followed 
by RNA-Seq experiments could help determine whether the observed transcriptional 
changes are indeed mutation-specific. Altogether, correction of the R175H mutation 
resulted in a markedly similar response to the R273H correction, with canonical p53 
response being reinstated as well as up-/downregulated genes largely overlapping with 
the R273H lines.

Validation of the platform through correction of SMAD4‑Q311*, PTEN‑R233*, 

and KRAS‑G12D 

Having shown that correction of driver mutations can be used to study hotspot muta-
tions of p53, we wanted to extend our approach towards other commonly mutated 
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cancer driver genes. For this purpose, we investigated correction of KRAS-G12D in 
PANC-1 and HuCC-T1 cells, SMAD4-Q311* in HT-29, as well as PTEN-R233* in the 
NCI-H1155 line. A time course was run in the same manner as described before, with 
the cancer lines being infected first with an ABE-containing virus (green), followed by 
subsequent infection with a gRNA-containing second virus (red). The level of gRNA-
expressing population was then followed again over time (Fig. 6A):

Depletion dynamics differed markedly from correction of the TP53-R273H and 
R175H mutations. In contrast to the TP53 experiments, correction of other driver muta-
tions did not induce comparably strong effects. For instance, correction of KRAS-G12D 
led to a reduction of gRNA-expressing cells to ~ 30–35%, which occurred with a slower, 
more linear progression in both PANC-1 and HuCC-T1 cell lines. Similarly, correction 

Fig. 5 Analysis of differentially expressed genes at 72 h after TP53-R175H correction in ESO-51 cells. A 
Volcano plot of DE genes 72 h post infection (p < 0.05, fc > 2). Gene names overlapping with a census of 116 
core p53 targets from Fischer (2017) [50] are indicated. B Heatmap of differentially expressed (DE) genes. 
X-axis: independent replicates used for mRNA-seq. Genes were grouped using hierarchical clustering. C 
Left: analysis of upregulated genes. High-confidence p53 target genes are highlighted in red if they overlap 
with either of [50, 64, 66]. Genes that overlap with ChIP-seq peaks from the UCSC p53 BAER track [67] are 
highlighted in light red. Right: Analysis of downregulated genes. Genes described to be downregulated by 
the p53-p21-DREAM-CDE-CHR pathway in [66] are marked in blue. From the remaining genes, those that are 
part of the “cell cycle” term GO:0007049 are marked in light blue. (D + E) Gene ontology enrichment analysis 
of up-/downregulated genes
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of SMAD4-Q311* and PTEN-R233* resulted in more moderate depletions, with 64% 
and 44% of gRNA-containing cells surviving, respectively (Fig. 6A, Additional file 2: Fig. 
S1). This weaker depletion is unlikely due to differences in editing efficiency, because 
equally strong or even stronger A-to-G conversion compared to the TP53 corrections 
was detected for these drivers, ranging from 22 to 78% (Fig.  6B). In contrast, KRAS 
and PTEN each regulate distinct, individual growth-controlling pathways (RAS–RAF–
MEK–ERK for KRAS, PI3K–AKT for PTEN), which may explain their comparatively 
weaker depletion phenotypes. Nonetheless, this interpretation remains speculative, and 
further investigation is required to delineate the relative contribution of pathway-spe-
cific effects versus broader tumor suppressor network activation.

Intriguingly, sorting of the surviving ABE/gRNA-expressing populations at the end 
of the time course revealed residual editing across varying levels (4–80%, Fig. 6B), sug-
gesting that corrected cells can survive much longer upon re-expression of the wild type 
allele, or that resistant clones have emerged in the population. Particularly striking was 
the proportion of corrected cells remaining in the SMAD4 edited cells (80%). Closer 
inspection of the curve progression revealed that after an initial drop of SMAD4 cor-
recting gRNA expressing cells up to day 9, no further depletion was observed at later 
time points (Fig. 6A). Together with the high proportion of SMAD4 corrected cells at 
the end of the experiment, this result suggests that after an initial depletion, the cells 
adapted to re-expression of restored SMAD4 and continued proliferating without any 
growth disadvantage.

In order to find a possible explanation for this phenotype, we decided to analyze 
the transcriptome of SMAD4-Q311* corrected cells at 48 h and 72 h post infection 
via RNA-seq as described before. At these time points, we observed 14 and 107 DE 
genes, respectively (mostly upregulated). Inspecting the transcripts for editing on 
RNA level, we detected an astonishing 91 to 98% correction of the target adenine at 

Fig. 6 Correction of miscellaneous driver mutations affects cell growth in different ways. A Time course 
of indicated cell lines and indicated mutation correcting gRNAs versus control gRNA transduced cells 
(gray). The ratio of tdTomato (= gRNA) positive versus tdTomato negative cells was measured starting at 
day 3 post infection, every 3 to 6 days. The tdTomato percentages measured at day 3 were set to 100%. 
Reference = tdTomato level at day 3. Error bars represent mean + SD from independent infections in 
triplicates. ** indicates p < 0.01, *** indicates p < 0.001, **** indicates p < 0.0001. B Editing efficiency at the 
target loci of the corrected driver mutations. For day 3, total DNA was taken from the mixed population and 
normalized to the gRNA-expression level. For day 35 to 40, DNA was isolated from the sorted, tdTomato/GFP 
double-positive population
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48  h and 72  h p.i., respectively. This high rate of editing at the RNA level is likely 
driven by nonsense-mediated decay of the mutated SMAD4 transcript, which in turn 
leads to a higher stability of the corrected transcripts, ultimately resulting in the 
observed editing rate approaching 100%. This hypothesis is supported by the analysis 
of the RNA-seq data at the earlier time point, which revealed SMAD4 as one of the 
most upregulated transcripts (Fig. 7A).

Gene ontology enrichment analysis at the early time point revealed a strong enrich-
ment of categories related to apoptosis and cell death, providing a possible expla-
nation for the depletion initially seen (Fig.  7C). Interestingly, in the gene ontology 
enrichment analysis for the later time point, these categories had vanished and were 
now dominated by extracellular and developmental pathways, possibly reflecting that 
the cells had adapted to the correction and re-expression of SMAD4. Markedly, mem-
bers of the ID protein family (ID1, ID2, and ID3) were strongly upregulated after cor-
rection (Fig. 7A + B), consistent with their role as SMAD4 target genes [78, 79] in the 
TGF-beta pathway [80]. In fact, other TGF-beta components, such as UCA1 [81, 82], 
HPGD [83], MUC5AC [84], and TBX3 [85] were also upregulated (Additional file 3: 
Table  S2). Future work could investigate if the upregulation of these factors plays a 
role in the adaptation process [86, 87].

Fig. 7 Differentially expressed genes after correction of SMAD4-Q311*. ABE-expressing cells were infected 
with SMAD4-Q311* repairing gRNA lentivirus. Total RNA was isolated 48 h and 72 h after infection and 
analyzed by RNA-seq. A Volcano plots of DE genes 48h and 72 h post infection (p < 0.05, fc > 2). Top 12 
significant genes are highlighted. B Heatmap of upregulated genes by cell line, all time points merged, 
grouped using hierarchical clustering. X-axis: Independent replicates used for RNA-seq, sorted by timepoint 
(48 h + 72 h p.i.). Representative targets of TGF-beta pathway underlined. C Gene ontology enrichment 
analysis of DE genes at indicated time points
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Altogether, by utilizing base editing, we corrected a variety of known cancer driver 
mutations and measured subsequent depletion over time. This enabled us not only to 
uncover dependencies of a given cancer on a common driver mutation but also provided 
a qualitative comparison between different drivers within the same cancer line. Given 
the critical importance of uncovering the potential vulnerabilities of cancers on their 
respective driver mutations, e.g., in clinical diagnostics, our system provides a valuable 
tool for making meaningful comparisons.

Discussion
Base editing has emerged as a transformative technology, enabling precise and efficient 
nucleotide modifications without inducing double-stranded breaks [88]. This approach 
has significantly advanced various scientific fields, including genetic disease modeling 
[89], functional genomics [90–92], and potential therapeutic interventions [93–95]. 
While initial studies have begun to explore the use of base editing for investigating can-
cer driver mutations [37, 39, 40] the full potential of this technology for systematically 
characterizing their functional and transcriptional consequences remains to be fully 
realized.

In this study, we utilized the power of adenine base editing to functionally and tran-
scriptionally profile cancer driver mutations, with a primary focus on TP53 hotspot 
mutations. By correcting TP53-R273H and TP53-R175H mutations in cancer cell lines 
derived from diverse tissues, we were able to uncover both the phenotypic dependen-
cies on mutant TP53 expression and the restoration of conserved tumor-suppressive 
transcriptional programs upon correction. This combined approach not only illumi-
nated the critical role of TP53 mutations in sustaining oncogenic phenotypes but also 
revealed the robustness of the reinstated p53-dependent regulatory networks. Recently, 
small-molecule inhibitors have been employed to investigate p53-dependent transcrip-
tional responses [96, 97]. Comparing the transcriptional programs elicited by genetic 
correction via base editing with those induced by pharmacological activation could pro-
vide deeper insights into the context-specific dynamics and therapeutic potential of p53 
pathway reactivation.

Considering the extensive efforts by numerous research groups to assemble compre-
hensive lists of p53 target genes [50, 54, 67, 68], we believe that the relatively simple 
platform described in this manuscript offers a straightforward and scalable approach 
for identifying transcriptional targets of additional cancer driver genes. In this context, 
comparing the expression profiles of corrected cell lines harboring different p53 hotspot 
mutations, such as R273 and R175H, could offer valuable insights.

Notably, we predict that the versatility of this platform extends beyond transcriptom-
ics, as it can be readily adapted to integrate other omics technologies, including pro-
teomics [98] and metabolomics [99]. Correcting the same cancer driver mutation in 
different cell lines, followed by proteomic and metabolomic profiling, could uncover 
downstream effects at the protein and metabolic levels that are not captured by tran-
scriptomic analysis alone. This multi-omics approach would have the potential to reveal 
novel signaling pathways, post-translational modifications, and metabolic reprogram-
ming events associated with specific mutations, providing a more comprehensive under-
standing of the functional consequences of cancer driver alterations. Ultimately, such 
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integrative analyses could identify new biomarkers and therapeutic vulnerabilities, fur-
ther advancing precision oncology.

In the current study, we focused on the application of adenine base editors (ABEs) due 
to their demonstrated high efficiency and minimal propensity for off-target editing [45, 
95, 100, 101]. ABEs are particularly well-suited for correcting cancer-associated muta-
tions, as a significant proportion of driver mutations involve A·T to G·C transitions. In 
fact, nearly half of all known cancer driver mutations have been described to be poten-
tially addressable using ABEs [36, 102]. For instance, when looking at TP53, five of the 
seven most common hotspot mutations are addressable using ABEs (Additional file 2: 
Fig. S9B). Nevertheless, the system has several limitations, including bystander editing, 
which is particularly pronounced when employing the ABE8e system. Given the broad 
editing window of ABE8e, which exhibits significant A-to-G conversion at gRNA posi-
tions 3–8 [45, 95, 100, 101], other adenine residues within the gRNA region are also 
likely to be edited. These additional edits may alter codons, potentially resulting in pro-
tein variants that lack wild-type function. To alleviate this problem, ABEs with a more 
narrow editing window, such as the ABE9 system [103], which almost exclusively targets 
positions 5–6, can be used. Furthermore, if low levels of detrimental bystander edits are 
unavoidable, employing single-cell RNA sequencing would allow untangling on-target 
from bystander editing in individual cells. Moreover, we anticipate that other base edit-
ing technologies, such as cytosine base editors (CBEs) [104, 105] and glycosylase-based 
base editors (GBEs) [106], could similarly be applied to expand the range of targetable 
mutations. CBEs enable precise C·G to T·A conversions, while GBEs facilitate T·A to 
G·C and C·G to G·C substitutions [107], offering complementary capabilities to address 
mutations not targetable by ABEs. In addition, for more complex mutations, including 
insertions, deletions, or transversions that are beyond the scope of current base editors, 
prime editors may represent a powerful alternative [108, 109].

Our platform’s versatility was validated through the correction of additional cancer-
associated mutations in SMAD4, PTEN, and KRAS, demonstrating its broader applica-
bility in dissecting the functional roles of diverse genetic alterations (Additional file 2: 
Fig. S9). Interestingly, we observed distinct progression dynamics following the correc-
tion of these mutations. While TP53 correction resulted in a strong and rapid decline of 
corrected cells across multiple cancer cell lines, the correction of SMAD4, PTEN, and 
KRAS mutations exhibited more gradual declines, with less pronounced growth disad-
vantages that did not reach the same levels observed for TP53. Of note, at least one of 
the cell lines (A431) used in our study is TP53 hemizygous [110], with the other five 
lines being either homozygous or hemizygous due to loss of the wildtype allele (vari-
ant allele frequency of 100% of the respective R273H or R175H mutations) [111–115], 
indicating that correction of a single allele is sufficient to induce prominent depletion 
of the cells. The observed differences suggest that the oncogenic dependencies and cel-
lular consequences of driver mutations are highly driver-specific, reflecting the unique 
biological roles and downstream signaling pathways associated with each gene. The 
strong selective pressure against TP53 correction likely reflects the central role of p53 in 
maintaining genomic integrity and suppressing tumorigenesis, whereas the more mod-
erate effects observed for SMAD4, PTEN, and KRAS may be due to redundancy in sign-
aling pathways or compensatory mechanisms within the cancer cells. More research is 
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required to investigate this, but if confirmed, these findings hold significant potential for 
implementation in precision oncology. Intriguingly, incorporating mutation correction 
with single-cell RNA sequencing could offer not only deeper insights in gene network 
hierarchy and untangle confounding bystander edits, but potentially also reveal different 
p53 programs of distinct cell populations within the same cancer cell line.

Translating this base editing platform to patient-derived cancer organoid cultures 
[116, 117] could enable the functional assessment of correcting specific driver muta-
tions in a patient-specific manner. Such an approach may offer valuable diagnostic and 
prognostic insights by distinguishing mutations essential for tumor maintenance from 
those with less impact. Furthermore, differential responses observed through this sys-
tem could help predict patient-specific treatment outcomes, informing the development 
of tailored therapeutic strategies. Integrating these functional insights with genomic, 
transcriptomic, and multi-omic profiling could refine patient stratification based on 
tumor-specific mutational dependencies, ultimately guiding more precise and effective 
cancer treatments. Beyond diagnosis, the ultimate goal of oncology is to eradicate can-
cer cells, possibly through correction of cancer driver mutations in vivo. Notably, rapid 
advancements in the development of efficient in vivo delivery systems for genome edit-
ing tools [40, 118, 119] may further accelerate this transformation, bringing base editing 
closer to its potential as a therapeutic strategy for personalized oncology. Among emerg-
ing approaches, the delivery of base editor mRNAs in combination with chemically syn-
thesized sgRNAs using lipid nanoparticles (LNPs) represents a particularly promising 
strategy. This method offers a transient yet efficient platform for genome editing that 
restricts exposure to the genome editing components, an important consideration for 
clinical translation. Indeed, recent studies have documented significant progress in 
applying LNP-based delivery for therapeutic genome editing [95, 120]. In parallel, engi-
neered virus-like particles have also gained attention as non-integrating vectors capable 
of mediating in vivo delivery with high specificity and translational potential [121].

Finally, compared to conventional cancer treatments, which are often associated with 
significant toxicity and the risk of secondary malignancies, base editor-based therapies 
may offer a more targeted and well-tolerated alternative. Encouragingly, recent clinical 
trials involving base editing technologies have demonstrated favorable safety profiles 
[122]. As such, the future development of BE-based therapeutic approaches, potentially 
in combination with other interventions (e.g., immune therapy), warrants consideration 
in the context of precision oncology.

Conclusions
Our study establishes a robust framework for investigating the functional and transcrip-
tional impact of cancer hotspot mutations through adenine base editing. By correcting 
TP53 hotspot mutations in diverse cancer cell lines, we demonstrated that mutant TP53 
expression is essential for sustaining oncogenic phenotypes, while its correction restores 
a highly conserved tumor-suppressive transcriptional program. Notably, these effects 
were consistent across different tissue types and independent of co-occurring mutations, 
underscoring the existence of a shared p53-dependent regulatory network. Beyond 
TP53, our platform’s applicability extends to other cancer-associated mutations, reveal-
ing gene-specific differences in oncogenic dependencies. Furthermore, the integration 
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of base editing with transcriptomic profiling offers a systematic approach for interrogat-
ing the downstream effects of cancer driver mutations at a global gene expression level. 
Future applications of this platform in patient-derived organoids and multi-omics analy-
ses could provide deeper insights into tumor biology and mutation-specific therapeutic 
vulnerabilities. Overall, our findings reinforce the potential of base editing as a power-
ful tool for dissecting cancer driver mutations and highlight its translational promise in 
precision oncology. By providing a scalable and versatile strategy to functionally assess 
oncogenic alterations, this work contributes to the broader effort of developing muta-
tion-targeting therapeutic interventions.

Methods
gRNA design

sgRNAs were manually designed to match the mutant sequence in question and subse-
quently assessed with the following algorithms: DeepSpCas9 [123] to assess Cas9 bind-
ing, DeepBE [124] and BEdeepon [125] for assessing adenine base editing efficiencies as 
well as CasOFFinder [126] to find potential off-targets.

gRNAs and primers used

gRNA Sequence

TP53-R273H GTG CAT GTT TGT GCC TGT CC

TP53-R175H GAG GCA CTG CCC CCA CCA TG

KRAS-G12D GCT GAT GGC GTA GGC AAG AG

SMAD4-Q311* AGG CTA GAA TGC AAG CTC AT

PTEN-R233* CCG TCA TGT GGG TCC TGA AT

VEGFA3 GGT GAG TGA GTG TGT GCG TG

Nonsense gRNA CCT CCA GTT CAT GCC GCC CA

Primer Sequence

TP53-R273H fwd GTG CTA GGA AAG AGG CAA GGA 

TP53-R273H rev CTG CTT GCC ACA GGT CTC C

TP53-R175H fwd CAA CCA CCC TTA ACC CCT CC

TP53-R175H rev CGC CAA CTC TCT CTA GCT CG

KRAS-G12D fwd TGG ACC CTG ACA TAC TCC CA

KRAS-G12D rev AGC GTC GAT GGA GGA GTT TG

SMAD4-Q311* fwd AGT TCT TAG ACA TTG CAT AAG CTT GT

SMAD4-Q311* rev TCC AGT TAA CCA GAG ATC CTGA 

PTEN-R233* fwd TGC CAC TAG AAG TCT AAT TTT GGG A

PTEN-R233* rev TCA CCA ATG CCA GAG TAA GCA 

VEGFA3 fwd GTG CAG ACG GCA GTC ACT AGG 

VEGFA3 rev TAT TGG AAT CCT GGA GTG ACCC 

Plasmids

For gRNA cloning into the lentiviral plasmid, protospacers were cloned into the LRT2B 
vector expressing tdTomato (Addgene plasmid #110854), using BsmBI/BbsI sites fol-
lowing the standard protocol. Unless a guanine was the first base in the protospacer, a 
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guanine was added to the 5′ end of the protospacer before cloning to boost the expres-
sion of the gRNA from the human U6 promoter. Oligos for gRNA (containing cacc-/
aaac-overhangs) were phosphorylated and annealed in a 20-µL reaction containing 
100 pmol of each gRNA oligo (sense + antisense), 2 µL 10 × T4 ligation buffer and 0.5 µL 
T4 polynucleotide kinase. The reaction was run in a thermocycler at 37 °C for 30 min, 
95  °C for 5 min, and then ramped down to 25  °C at a rate of 0.1  °C/min. GoldenGate 
cloning was then performed in a 20-µL volume with: 1 µL of 1/100 diluted hybridized 
oligos, 60  ng backbone vector, 2 µL 10 × T4 ligation buffer, 1 µL BsmBI and 1 µL T4 
ligase. The reaction was run in a thermocycler as follows: 6 × (37 °C for 5 min, 23 °C for 
5 min) followed by incubation at 37 °C for 15 min, and finally, 80 °C for 5 min. Next, 2 
µL of this final reaction was used to transform DH5a E. coli cells. A single colony was 
picked, grown in liquid LB-antibiotic media before plasmid DNA was purified (Thermo 
Fisher GeneJet DNA Miniprep Kit). The gRNA insert was verified with a forward primer 
to the U6 promoter: 5′-GAG GGC CTA TTT CCC ATG ATTCC-3′. For the base edi-
tor cloning, the NG-ABE8e base editor was cloned into a lentiviral vector as previously 
described [37] and will be available  from Addgene (Addgene plasmid #242000). Single 
clones were picked, grown, and miniprepped followed by sequencing employing several 
primers aligning the full sequence of the insert in addition to diagnostic test digests con-
firming the correct integration into the backbone. Finally, miniprepped plasmids were 
transformed into E.  coli DH5a and cells were grown overnight at 37  °C with constant 
shaking. Plasmid maxiprep kits (Qiagen) were used to provide transfection-level DNA in 
a concentration of ~ 1 µg/µL. All plasmids were once again validated by Sanger sequenc-
ing and then used for lentivirus production (see also Additional file 2: Fig. S10).

Lentivirus production and transduction

Lentiviral particle production was performed as follows: 7 million HEK293T (LentiX) 
cells were seeded in 10-cm dishes and transfected on the next day at 80% confluency 
with 2  µg VSV-G (pMD2.G, Addgene plasmid #12,259), 6  µg psPAX2 (Addgene plas-
mid #12,260;) and 10 µg of the transfer vector (e.g., pLenti-EF1a.NGABE8e-P2A-GFP-
PGK-PuroR or pLenti-U6-EF1a-tdTomato-P2A-BlasR) using 35 µg PEI (1 mg/mL) per 
dish. After ~ 20  h of transfection, the medium was changed to complete DMEM and 
72  h after transfection the viral supernatant was collected, filtered through a 0.45  µm 
filter, and centrifuged for 2 h at 50,000 g at 4 °C. The supernatant was decanted, and the 
viral pellets were resuspended in PBS overnight at 4 °C on a shaker. For long-term stor-
age, the virus particles were kept in cryovials at − 80 °C. Alternatively (for some gRNA 
viruses), the viral supernatant was concentrated using Amicon Ultra-15 Centrifugal Fil-
ter Devices (100 kDa, Merck) according to the manufacturer’s instructions. When a new 
cell line was used for the first time, the amount of virus needed to infect 50% of the cells 
was determined by titration. Transductions were typically performed in 96-well plates 
in the presence of protamine sulfate (final concentration 5 µg/mL; Sigma-Aldrich) and 
spin-infected for 1 h, 1000 g at 37 °C.

Cell culture

A431 (CRL-1555), HT-29 (HTB-38), PANC-1 (CRL-1469), NCI-H1975 (CRL-
5908), NCI-H1155 (CRL-5818), and HEK293T (CRL-11268) cells were obtained and 
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authenticated through ATCC. ESO-51 cells (ACC 694) were purchased and authenti-
cated through the German Collection of Microorganisms and Cell Cultures (DSMZ), 
and HuCC-T1 cells (RCB-1960) were purchased and authenticated through the Riken 
Institute. The cell lines were maintained at 37 °C, 5%  CO2 in the following media, with 
each supplemented with 10% (v/v) FBS (Gibco) and antibiotics (100 U/mL penicillin, 
100 mg/mL streptomycin; Gibco), referred to henceforth as complete media:

HEK293T DMEM (high glucose, GlutaMAX, pyruvate)

A431 DMEM (high glucose, GlutaMAX, pyruvate)

HT-29 McCoy’s 5a (high glucose, L-glutamine, Bacto-Pepton)

PANC-1 DMEM (high glucose, GlutaMAX, pyruvate)

NCI-H1975 RPMI 1640 (+ L-glutamine)

ESO-51 RPMI 1640 (+ L-glutamine)

HuCC-T1 RPMI 1640 (+ L-glutamine)

NCI-H1155 RPMI 1640 (+ L-glutamine, only 5% FBS)

Cell lines were routinely tested and confirmed to be Mycoplasma-free (latest on Sep-
tember 19, 2024). For all cell lines used, cells were allowed to recover after thawing for 
two passages before performing experiments.

Flow cytometry

All cell lines were typically transduced in 96-well plates, and the percentage of infected 
cells was analyzed by measuring GFP/tdTomato expression using a MACSQuant VYB 
Analyzer (Miltenyi Biotec). At 72 h after transduction, cells were trypsinized and col-
lected for flow cytometry analysis. Viable single cells were gated using the forward and 
side scatter, followed by doublets exclusion (see example gating below). GFP fluores-
cence was measured using a blue 488  nm laser, and tdTomato was measured using a 
561 nm yellow laser. Log area of the signal was collected. For GFP/tdTomato gating, a 
gate was defined using the appropriate wildtype so that ~ 1% positive signal remained, 
which was later subtracted (Additional file 2: Fig. S11). Cell sorting was carried out using 
a BD FACSMelody™ Cell Sorter (BD Biosciences, NJ, USA).

For time course experiments, starting day 3, adherent biological triplicates were meas-
ured every 3–6 days (dependent on cell growth). For each time point, medium was care-
fully washed with 200 µL sterile PBS and treated with 25–30 µL/well Trypsin–EDTA 
(0.25%, Gibco), just enough to cover the adherent layer of cells. Cells were incubated for 
5–10 min at 37 °C. Next, 170 µL complete medium was added directly to the cells. The 
cell suspension was homogenized by pipetting up and down vigorously. Then, 20–50 µL 
were transferred to a new 96-well plate for later acquisitions and filled up to 200 µL with 
prewarmed complete medium. Of the remaining 170 µL cell solution, 50–100 µL were 
used for flow cytometry. For DNA isolation at day 3, the remaining cells from all repli-
cates of each condition were pooled and used for gDNA extraction.

Genotyping of base edited cells

Genomic DNA was isolated using the QIAamp DNA Blood Mini Kit according to the 
manufacturer’s instructions. Targeted PCR amplification of the respective exons was 
performed using high-fidelity Phusion polymerase according to the manufacturer’s 
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instructions. Briefly, for one 50-µL PCR reaction, 10 µL HF buffer was added to 200–
300 ng genomic DNA and mixed with 1 µL dNTPs (10 mmol/L) in addition to 1.25 µL 
of each forward and reverse primer (20 mmol/L). Then, the reaction mix was brought to 
49.5 µL using nuclease-free water, and 0.5 µL Phusion DNA polymerase was added. Rea-
gents were mixed, briefly spun down at room temperature, and run in a thermocycler 
with the following cycling conditions:

• 30 s 98 °C (initial denaturation)
• 35 × :

◦ 15 s 98 °C (denaturation).
◦ 30 s 65 °C (annealing, specific to primer pairs).
◦ 45 s 72 °C (extension).

• 5 min 72 °C (final extension).
• 8 °C (hold).

A 5-µL aliquot of each PCR reaction was run on agarose gel, confirming correctly 
sized bands and purity of procedure through a blank no-template water control. PCR 
products were purified using ISOLATE II PCR and Gel Kit (Bioline) according to the 
manufacturer’s instructions, and DNA concentrations were quantified using a Nan-
odrop spectrophotometer. The appropriate amount of DNA, together with the respec-
tive sequencing primers (forward + reverse primer were used), was submitted for Sanger 
sequencing, following the vendor’s protocol.

EditR to quantify base editing efficiency

EditR [127] is a free online tool to quantify sequencing reads from raw ab1 files and the 
gRNA protospacer sequence (20  bp). For quantification of base editing efficiency, for-
ward + reverse Sanger sequencing reactions of the target condition were averaged, and 
forward + reverse Sanger sequencing reactions of cells infected with the control gRNA 
were subtracted (= background). If editing was estimated from a mixed population (e.g., 
only 50% infected with gRNA virus), the resulting editing was normalized to the gRNA-
expression level (e.g., divide by 0.5).

Rechallenging residual ABE‑gRNA expressing cells with mRNA or sgRNA

PANC-1-ABE-gRNA cells were kept in complete DMEM in addition to puromycin 
(2  µg/mL) and blasticidin (20  µg/mL). For transfections, 2 ×  105 cells were seeded in 
24-well plates 1 day prior to transfections and transfected using in vivo-jetRNA + (Poly-
plus) transfection reagent according to the manufacturer’s recommendations. We used 
100  pmol gRNA (R273H-targeting or VEGFA3-targeting, Synthego) or 2  pmol ABE 
mRNA (IVT mRNA, generated according to the manufacturer’s guidelines using the 
HiScribe T7 ARCA mRNA Kit (NEB, Ipswich, MA, USA)), and kept a ratio (w/v) of 
RNA:Transfection reagent at 1:2. Seventy-two hours post transfection, half the cells were 
collected and genomic DNA was isolated. Then, the TP53-R273H and VEGFA3 loci were 
amplified using Phusion polymerase (NEB) followed by Sanger sequencing (Microsynth) 
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to reveal the editing efficiency. The other half of the cells were kept in culture for two 
more days, and live cell counts were acquired using flow cytometry (MACSQuant VYB, 
Miltenyi Biotec, Bergisch-Gladbach, Germany) at 5 days post transfection.

RNA‑seq analysis

The raw data from the three cell lines were aligned to the human genome hg38 using 
STAR aligner v2.7.3a [128] after quality check with FastQC v0.12.1 [129]. The annota-
tion used for mapping was GENCODE v46 [130] [B]. Consequently, using featureCounts 
v2.0.6 [131] a count matrix was generated for 42 samples of the R273H mutation for 
further downstream analysis. For the R175H mutation, the analysis was performed on 
4 samples. All genes with no reads were discarded. Principal component analysis (PCA) 
was performed using genes with the highest variance. The differential expression analy-
sis was performed using DESeq2 [132]. The fold change cutoff was set at 2 and p-value 
threshold was set at 0.05 for considering the differentially expressed genes. Heatmaps 
were clustered based on hierarchical clustering. Gene ontology analysis was performed 
with the goseq [133] algorithm.

Statistical analysis

Data was analyzed using Excel. Unless otherwise stated, time points in time-course 
experiments are presented as the SDs (presented as error bars) of three independent 
experiments, performed in biological triplicates. For base editing time courses, the raw 
FACS points were processed using FlowJo, and the statistical difference between the 
mean percentage at the end point of experimental gRNA and that of control gRNA/no 
gRNA was determined using an unpaired two-tailed Student t test. p < 0.05 was consid-
ered to be statistically significant.
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